早期分类算法可帮助用户对机器学习模型的预测更快地反应。例如,医院的预警系统使临床医生通过准确预测感染来改善患者的结局。尽管早期分类系统正在迅速发展,但仍然存在一个主要差距:现有系统不考虑不规则的时间序列,这些时间序列之间的观察结果之间存在不平衡且经常长的差距。众所周知,这种系列在医疗保健等有影响力的领域中普遍存在。我们弥合了这一差距,并研究了不规则时间序列的早期分类,这是早期分类器的新环境,它为更真实的问题打开了大门。我们的解决方案“停止&Hop”使用连续的重复网络实时建模正在进行的不规则时间序列,而不规则的停止策略接受了加强学习的培训,可以预测何时停止和对流媒体系列进行分类。通过采用实价阶梯尺寸,停止策略可以灵活地决定何时实时停止持续的系列。这样,停止和HOP无缝地集成了观测时间安排中包含的信息,这是在这种情况下进行早期分类的新的至关重要的来源,并与时间序列值一起为不规则时间序列提供早期分类。使用四个合成和三个现实世界数据集,我们证明,与适应这个新问题的最新替代方案相比,停止和跳跃始终如一地做出更早,更准确的预测。我们的代码可在https://github.com/thartvigsen/stopandhop上公开获取。
translated by 谷歌翻译
食源性疾病是一个严重但可以预防的公共卫生问题 - 延迟发现相关的暴发导致生产力损失,昂贵的召回,公共安全危害甚至生命丧失。尽管社交媒体是识别未报告的食源性疾病的有前途的来源,但缺乏标记的数据集来开发有效的爆发检测模型。为了加快基于机器学习的疫苗爆发检测模型的开发,我们提出了推文-FID(Tweet-Foodborne疾病检测),这是第一个用于多种食源性疾病事件检测任务的公开注释的数据集。从Twitter收集的Tweet-FID带有三个方面:Tweet类,实体类型和老虎机类型,并带有专家以及众包工人生产的标签。我们介绍了利用这三个方面的几个域任务:文本相关性分类(TRC),实体提及检测(EMD)和插槽填充(SF)。我们描述了用于支持这些任务模型开发的数据集设计,创建和标签的端到端方法。提供了这些任务的全面结果,以利用Tweet-FID数据集上的最新单项和多任务深度学习方法。该数据集为未来的Foodborne爆发检测提供了机会。
translated by 谷歌翻译
有毒语言检测系统通常会错误地将包含少数群体群体提及的毒性的错误标记文本,因为这些群体通常是在线仇恨的目标。这种对虚假相关性的过度依赖也导致系统在检测隐式有毒语言方面挣扎。为了帮助缓解这些问题,我们创建了Toxigen,这是一个新的大规模和机器生成的数据集,该数据集是274K有毒和良性陈述,约有13个少数群体。我们开发了一个基于示范的提示框架和一种对抗性分类器的解码方法,以使用大量预处理的语言模型生成微妙的有毒和良性文本。以这种方式控制机器的生成使毒素可以比以前的人写文本的资源更大的规模和大约人口组覆盖隐式有毒文本。我们对毒素的一个充满挑战的子集进行人体评估,发现注释者难以区分机器生成的文本和人类写的语言。我们还发现,94.5%的有毒例子被人类注释者标记为仇恨言论。我们使用三个公开可用的数据集,我们表明,对我们的数据进行毒性分类器的填充可以大大提高其在人体编写数据上的性能。我们还证明,毒素可用于抵抗机器生成的毒性,因为鉴定在我们的评估子集中大大改善了分类器。我们的代码和数据可以在https://github.com/microsoft/toxigen上找到。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
Edge computing is changing the face of many industries and services. Common edge computing models offload computing which is prone to security risks and privacy violation. However, advances in deep learning enabled Internet of Things (IoTs) to take decisions and run cognitive tasks locally. This research introduces a decentralized-control edge model where most computation and decisions are moved to the IoT level. The model aims at decreasing communication to the edge which in return enhances efficiency and decreases latency. The model also avoids data transfer which raises security and privacy risks. To examine the model, we developed SAFEMYRIDES, a scene-aware ridesharing monitoring system where smart phones are detecting violations at the runtime. Current real-time monitoring systems are costly and require continuous network connectivity. The system uses optimized deep learning that run locally on IoTs to detect violations in ridesharing and record violation incidences. The system would enhance safety and security in ridesharing without violating privacy.
translated by 谷歌翻译
Cognitive Computing (COC) aims to build highly cognitive machines with low computational resources that respond in real-time. However, scholarly literature shows varying research areas and various interpretations of COC. This calls for a cohesive architecture that delineates the nature of COC. We argue that if Herbert Simon considered the design science is the science of artificial, cognitive systems are the products of cognitive science or 'the newest science of the artificial'. Therefore, building a conceptual basis for COC is an essential step into prospective cognitive computing-based systems. This paper proposes an architecture of COC through analyzing the literature on COC using a myriad of statistical analysis methods. Then, we compare the statistical analysis results with previous qualitative analysis results to confirm our findings. The study also comprehensively surveys the recent research on COC to identify the state of the art and connect the advances in varied research disciplines in COC. The study found that there are three underlaying computing paradigms, Von-Neuman, Neuromorphic Engineering and Quantum Computing, that comprehensively complement the structure of cognitive computation. The research discuss possible applications and open research directions under the COC umbrella.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
The application of deep learning algorithms to financial data is difficult due to heavy non-stationarities which can lead to over-fitted models that underperform under regime changes. Using the Numerai tournament data set as a motivating example, we propose a machine learning pipeline for trading market-neutral stock portfolios based on tabular data which is robust under changes in market conditions. We evaluate various machine-learning models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks with and without simple feature engineering, as the building blocks for the pipeline. We find that GBDT models with dropout display high performance, robustness and generalisability with relatively low complexity and reduced computational cost. We then show that online learning techniques can be used in post-prediction processing to enhance the results. In particular, dynamic feature neutralisation, an efficient procedure that requires no retraining of models and can be applied post-prediction to any machine learning model, improves robustness by reducing drawdown in volatile market conditions. Furthermore, we demonstrate that the creation of model ensembles through dynamic model selection based on recent model performance leads to improved performance over baseline by improving the Sharpe and Calmar ratios. We also evaluate the robustness of our pipeline across different data splits and random seeds with good reproducibility of results.
translated by 谷歌翻译
In this work, we address the problem of unsupervised moving object segmentation (MOS) in 4D LiDAR data recorded from a stationary sensor, where no ground truth annotations are involved. Deep learning-based state-of-the-art methods for LiDAR MOS strongly depend on annotated ground truth data, which is expensive to obtain and scarce in existence. To close this gap in the stationary setting, we propose a novel 4D LiDAR representation based on multivariate time series that relaxes the problem of unsupervised MOS to a time series clustering problem. More specifically, we propose modeling the change in occupancy of a voxel by a multivariate occupancy time series (MOTS), which captures spatio-temporal occupancy changes on the voxel level and its surrounding neighborhood. To perform unsupervised MOS, we train a neural network in a self-supervised manner to encode MOTS into voxel-level feature representations, which can be partitioned by a clustering algorithm into moving or stationary. Experiments on stationary scenes from the Raw KITTI dataset show that our fully unsupervised approach achieves performance that is comparable to that of supervised state-of-the-art approaches.
translated by 谷歌翻译
Automated text analysis has become a widely used tool in political science. In this research, we use a BERT model trained on German party manifestos to identify the individual parties' contribution to the coalition agreement of 2021.
translated by 谷歌翻译